

Submodular Optimization for Voltage Control in Power Systems

Zhipeng Liu 05/18/2018

Advisors: Professors Radha Poovendran and Linda Bushnell

Network Security Lab (NSL)

Department of Electrical Engineering, University of Washington

Power System Stability

Power systems are large-scale interconnected networked systems

Power system stability: the ability to regain a state of operating equilibrium following a disturbance

- Voltage stability
- Generator rotor angle stability

Voltage Stability in Power Systems

Ability to maintain voltages of every bus within desired limits

Instability may cause voltage collapse

Voltage Instability and Blackouts

Tokyo, Japan, 1987

Sweden, 1983

Voltagetoliespetitincestrottageritestabilitasfelkesvälagtavdisturbance origonating the 2003 blackout Loss of power to 2.8 million households for 3 hours 55 chtillioblaelogule affetgtinger. 5 cm ülictro ple cepeled (asosy thiel halmalf of eoanom)icoost50h65r10B

How does the power system control voltage?

Voltage Control

- Voltage deviates from desired value when reactive power supplied by generator cannot meet demand at load
- Reactive power can be injected at a bus by switching on capacitor banks at load buses (incurs switching cost)

Voltage Control Challenges

- Reactive power injections at one bus may impact voltages at multiple neighboring buses
- Key question: Where to inject reactive power to reach desired voltage?